MyFinder is a unique search engine with a simple privacy concept in mind. We log your searches but none of the data, it's that simple.
Gradient descentCoordinate descentEllipsoid methodMm algorithmInverse iterationSubgradient methodConjugate gradient methodBiconjugate gradient methodNewton's method in optimizationLine searchOptimizationSliding dftMinimax approximation algorithmMilstein methodDifferential dynamic programmingInverse scattering transformIterative methodRoot-finding algorithmsIndex calculus algorithmMidpoint methodJacobi methodHill climbingKaczmarz methodSequential minimal optimizationQuadratic programmingGradient methodPowell's methodActive-set methodMethod of characteristicsStochastic gradient descentDerivationIterated local searchRecursionDiscrete optimizationFixed-point iterationCycle detectionInverse quadratic interpolationConvex conjugateSequential quadratic programmingBacktracking line searchTabu searchSimplex algorithmDifferential equationIterative deepening a*Adjoint state methodInverse function ruleCriss-cross algorithmAnderson accelerationTernary searchOptimization problemCutting-plane methodMultigrid methodLevinson recursionTrajectory optimizationLinearizationAlgorithmReverse-delete algorithmHalley's methodJacobi eigenvalue algorithmDifferential evolutionSecond partial derivative testGlobal optimizationRelaxationLagrangian relaxationLocal optimumSecant methodProjections onto convex setsDifferential operatorIterated binary operationConvex optimizationFixed-point combinatorQuotient ruleCollocation methodIntegro-differential equationFormal derivativeMuller's methodCombinatorial optimizationLagrange multiplier2-optBasin-hoppingParabolic cylinder functionDelta ruleApproximation theoryDesign optimizationQr algorithmKarger's algorithmBasis pursuit denoisingMatrix chain multiplicationLeapfrog integrationOdds algorithmMutual recursionRecursive least squares filterStationary phase approximationSieve of pritchardClenshaw algorithmDynamic programmingBilinear interpolationFinite difference coefficientNonlinear programmingBounded inverse theorem